
X. Zhou et al. (Eds.): WISE 2004, LNCS 3306, pp. 479–490, 2004.
© Springer-Verlag Berlin Heidelberg 2004

A Reflective Approach to Keeping Business
Characteristics in Business-End Service Composition

Zhuofeng Zhao1, 2, Yanbo Han1, Jianwu Wang1, 2, and Kui Huang1, 2

1 Institute of Computing Technology, Chinese Academy of Sciences, 100080, Beijing, China
2 Graduate School of the Chinese Academy of Sciences, 100080, Beijing, China

{zhaozf, yhan, wjw, huangkui}@software.ict.ac.cn

Abstract. Business-end service composition can be best characterized as a user-
centric approach to web application construction and promises to better cope
with spontaneous and volatile business requirements and the dynamism of
computing environments. The mapping of business-end service composites into
software composites is a key issue in realizing business-end service
composition, and a corresponding reflective approach is proposed in the paper.
It is also investigated how to keep the business characteristics of business-end
service composites during the mapping and how to adapt to changes of the
correlation information for mapping. Basic components and patterns for
keeping business characteristics are designed first. Then, using the principle of
reflection, the contents for keeping business characteristics and the correlation
information for mapping are combined and maintained on a meta-level. The
result following the approach is a system implemented for mapping business-
end service composites to software composites.

1 Introduction

Service composition implies a new way of application construction. A number of
approaches to service composition have been proposed, for example BPEL4WS [2],
BPML [3], SELF-SERV [5], SWORD [15], SAHARA [16] and so on, covering
different aspects of service composition, such as modeling, language, system
implementation, etc. However, these works are mainly from software perspectives,
and require professional knowledge to develop business applications [14]. Most of
them are still weak in dealing with a spectrum of application scenarios that require
Web services be quickly composed and reconfigured by non-IT professionals in order
to cope with the spontaneity and volatility of business requirements. Examples of
such application scenarios include dynamic supply chain, handling of city emergency,
and so on. Business-end service composition, as a novel way for service composition,
promises to better cope with spontaneous and volatile business requirements. It can be
best characterized as a user-centric approach to application construction and an
effective way to achieve service composition from business perspectives.

Motivated by the above-stated considerations, we have designed a user-centric,
business-end service composition language – VINCA [7]. VINCA specifies the
following four aspects of business requirements in a process-centric manner: VINCA
process, VINCA business services, user contexts and interaction patterns. However,

480 Z. Zhao et al.

VINCA only provides a way for modeling service composition from business
perspective. In order to realize business-end service composition completely,
business-end service composites in VINCA have to be mapped to IT-end composites
supported by standard service composition technologies, such as BPEL4WS that is
used in fact as an IT-end service composition language in our paper. To solve this
problem, we propose a reflective approach which result in a system for the mapping.

The rest of the paper is organized as follows: Section 2 highlights the main issues
for solving the mapping problem through a reference example. In section 3, the
conceptual model of the reflective approach is presented. System implementation for
the reflective approach is given in section 4. In section 5, we briefly discuss the
related work. Section 6 concludes the paper and discusses some future works.

2 Problem Statement with a Reference Example

In this section, we discuss the issues of the mapping problem through a simplified
example excerpted from the FLAME2008 project1. The example is shown in Fig. 1, it
is a simple business process: Mr. Bull is going to visit Beijing during the Olympic
Games. He schedules two activities for his first day in Beijing before the Olympic
Games: ordering a restaurant for dinner after booking a sightseeing tour from a
travel agency.

Order RestaurantBook Excursion

Fig. 1. Business Process of the Reference Example

Assume that Mr. Bull builds a business-end service composite for the above-stated
example using VINCA. A VINCA process is defined, which contained Book
Excursion activity and Order Restaurant activity. Travel Agency business service2

and Restaurant business service are arranged to fulfill the two activities respectively.
Furthermore, Mr. Bull would like to book the cheapest travel agency by means of
configuring Travel Agency business service flexibly. In addition, he plans to order a
restaurant near his location in the evening, so he configures the Order Restaurant
activity as a context-awareness activity. The VINCA specification of this example is
shown in Fig. 2.

From this example, we can first sense the importance of business-end service
composition. Furthermore, we can note that the resulted business-end service
composite in VINCA shows the following characteristics:
- Context-awareness. User contexts can be used to serve as a sort of implicit inputs

in defining and executing a VINCA process, such as the Order Restaurant activity.

1 FLAME2008 is a project for developing service-oriented applications that provide integrated,

personalized information services to the public during the Olympic Games 2008.
2 Business service is the core mechanism in VINCA. It supports service virtualization through

abstracting Web services into business services so that the technical details of Web services
can be hidden.

A Reflective Approach to Keeping Business Characteristics 481

- Dynamic composition of services. Services composed in a VINCA process can be
determined dynamically at runtime, such as the Travel Agency business service used
in Book Excursion activity.

- Flexible support of user interaction. Users are allowed to appoint special places in
a VINCA process for interaction during process execution, e.g. Mr. Bull can decide
to interact after execution of the Book Excursion activity.

< V IN C A Process nam e="B u ll’s Travel">

…
<Seq uentia lA ctivity>

< B izA ctivity nam e= "B ook E xcu rsion">
 < Inp uts> … < /Inpu ts>
 < O u tpu ts> … < /O u tpu ts>
 < Q oSC onstra in t>

< C ost> cheapest< /C ost>
 < /Q oSC onstra in t>
 <R eferredB izServ ice> … /TravelA gen cy< /R eferredB izServ ice>
 < /B izActivity>
 < B izA ctiv ity nam e= "O rderR estauran t"

< In puts>
< B izE n tity nam e= "location" source= "U ser C ontext">
…

< /Inpu ts>
 < O u tpu ts> … < /O u tpu ts>
 < Q oSC onstra in t/>

 <R eferredB izServ ice> … /R estau ran t< /R eferredB izServ ice>
 < /B izActivity>
 < /Sequ entia lA ctiv ity >
 < /V IN C A Process>

Fig. 2. Snippet of the VINCA Specification of the Reference Example

The main issues in mapping such a business-end service composite to a
corresponding IT-end composite in BPEL4WS are:

 Maintenance of business characteristics. BPEL4WS does not provide support
for above-stated three business characteristics of VINCA directly. So, how to keep
the business characteristics of business-end service composites during the
mapping is an important issue to be solved.

 Adaptability of correlation information. The mapping from VINCA to
BPEL4WS needs to follow a set of correlation information between them,
specifying for example how an element in VINCA is mapped to elements in
BPEL4WS. However, BPEL4WS is in progress and evolving. Furthermore, the
business characteristics of VINCA may be augmented to adapt to a new business
domain. These mean that the correlation information will change over time. How
to adapt to changes of the correlation information is another important issue.

3 Conceptual Model of the Reflective Approach

To deal with the above-stated two issues, we propose a reflective approach. In this
section, we will first introduce the conceptual model of the approach.

The principle of reflection [6, 11] has been one of the most useful techniques for
developing adaptable systems, and it opens up in the possibility of system inspecting
and adapting itself using appropriate metadata. To solve the problems introduced in
section 1, we consider designing some special components and patterns for keeping

482 Z. Zhao et al.

business characteristics first. Then using the reflection principle to maintain the
correlation information in an adaptive way.

Mapping from

VINCA to BPEL4WS

Meta-level

Base-level

 Business Characteristic
Space

 Correlation Information
Space

reflects

combines with

introspects

Fig. 3. Conceptual Model of the Reflective Approach

As shown in Fig. 3, the key elements of the reflective approach are Business
Characteristic Space and Correlation Information Space on the meta-level, which are
put forward to deal with the issues of maintaining business characteristics and
adaptability of correlation information respectively. They can be used to introspect
and reflect the concrete mapping from VINCA to BPEL4WS on the base level. Since
BPEL4WS of current version requires static binding of Web services to flow, some
special services for keeping business characteristics and its’ usage patterns have to be
provided. The metadata about these service components and patterns are maintained
in Business Characteristic Space. Furthermore, the goal of Correlation Information
Space is to reify and control the mapping behavior from VINCA to BPEL4WS
through maintaining the correlation information. At the same time, through
combining the contents in Business Characteristic Space with the correlation
information in Correlation Information Space, the business characteristics can be kept
during the mapping controlled by Correlation Information Space. In the following
subsection, we detail these two key elements on the meta-level respectively.

3.1 Business Characteristic Space

Business Characteristic Space contains metadata about contents of keeping business
characteristics. The metadata can be divided into two categories. One is about the
special service components for keeping business characteristics; another is about the
patterns for using the components to keep business characteristics. The metadata
about components includes component name, textual description, operation interface,
access address, etc; the metadata about patterns includes pattern name, textual
description, condition for using, address of pattern file, etc.

Components for Keeping Business Characteristics
With respect to the three business characteristics of VINCA, we design the following
components to keep business characteristics:

 Context Collection Component
User contexts are represented in terms of key-value pairs in VINCA. Keys are

called dimensions and may take static values (such as name and birth date) or
dynamic values (such as the location of user at a certain time point). Context
collection component can be used to get both kinds of contextual values according to
the designed context dimensions.

A Reflective Approach to Keeping Business Characteristics 483

 User Interaction Component
User interaction in VINCA is defined to allow a user to input parameters during the

execution period of a VINCA process. User interaction component can be used to
trigger the interaction with users for certain input parameters in a VINCA process,
and return the values the users input. Considering the participation of human beings,
this component should be used in an asynchronous mode.

 Service Selection Component
Service selection component can be used to select the most appropriate service

according to the users’ demand. In VINCA, users can define their demands in terms
of QoS constraints for services, and the best services for users’ demands can be
chosen according to a corresponding service selection policy. Service selection
component implements the service selection policy.

 Service Invocation Component
Service invocation component acts as a proxy for invoking services dynamically. It

can be used to invoke a service according to the access information of the service and
returns the results after the invocation.

Patterns for Keeping Business Characteristics
Patterns for keeping business characteristics define the default pattern of using the
above-listed components to keep business characteristics of VINCA. Each pattern that
may include one or more components is designed specially for one category of
business characteristics. Accordingly, there are three patterns for VINCA:

 Context-Awareness Pattern
Context-awareness pattern defines the usage pattern of context collection

component to keep the business characteristic of context-awareness. This pattern can
be used when context-aware business activities are defined in a VINCA process.

 User Interaction Pattern
User interaction pattern defines the usage pattern of user interaction component to

keep the business characteristic of user interaction. This pattern can be used when
there are business activities that need user interaction in a VINCA process.

 Dynamic Composition Pattern
Dynamic composition pattern defines the usage pattern of service selection

component and service invocation component to keep the business characteristic of
dynamic composition. This pattern contains two components. It can be used when
there are business services that are used in the dynamic mode in a VINCA process.

The detailed representation of the three patterns in BPEL4WS will be given in
section 4.1.

3.2 Correlation Information Space

In order to adapt to changes of the correlation information, including information
about keeping business characteristics given above, Correlation Information Space is
set to maintain the correlation information between VINCA and BPEL4WS. Table 1
shows an overview of the correlation information in Correlation Information Space.

The correlation information is represented as the mapping relationship between
VINCA and BPEL4WS in terms of metadata of VINCA and BPEL4WS with
constraints. Note that the correlation information has three parts as shown in the table:
metadata of VINCA, metadata of BPEL4WS, and constraints on the mapping
relationship. The metadata of VINCA and BPEL4WS can be gotten from the basic

484 Z. Zhao et al.

constructs of VINCA and BPEL4WS languages. Some constructs of VINCA and
BPEL4WS can be mapped directly, such as control logic. However, the mapping
relationships from VINCA to BPEL4WS are not always one to one indeed, e.g. when
the business characteristics need to be kept, constraints are provided to express the
complicated mapping relationships. In this way, the patterns for keeping business
characteristics can be defined as constraints on the correlation information. As such
the contents in Business Characteristic Space can be combined with the correlation
information. Besides, some basic constraints can be defined, such as constraints for
transformation of elements’ name from VINCA to BPEL4WS. Due to the space
limitation, the complete correlation information is not listed here.

Table 1. Overview of Correlation Information between VINCA and BPEL4WS

Metadata of VINCA Metadata of BPEL4WS Constraints
VINCA Process BPEL4WS Process Basic constraints

Business Service PartnerLink Basic constraints,
Dynamic composition keeping pattern

Business Activity Invoke, Receive, Reply Basic constraints,
Context-awareness keeping pattern, User

interaction keeping pattern

Business Entity Variables Basic constraints

Control Logic (same
as BPEL4WS)

Sequence, Flow, While,
Switch

Null

4 Implementation and Application

In this section, we discuss the implementation of the reflective approach. Fig. 4 shows
the system architecture of implementation. There are two layers in the architecture:
- Reflective Platform, it maintains all the contents on meta-level introduced in the

previous section and affects the function of Transformation Engine in
Transformation Platform.

- Transformation Platform, it is in charge of transforming the VINCA
specifications of business-end service composites into BPEL4WS specifications
of IT-end service composites.

4.1 Reflective Platform

As shown in Fig.4, the Reflective Platform has two main parts: auxiliary service set
and Metaobjects.

Auxiliary Service Set
Auxiliary service set is composed of a set of services corresponding to the
components for keeping business characteristics introduced in section 3.1. For our
purposes, four kinds of services are defined, namely context collection service
(ContextCollectionServ), user interaction service (UserInteractionServ), service

A Reflective Approach to Keeping Business Characteristics 485

Fig. 4. System Architecture of the Reflective Approach

selection service (ServiceSelectionServ) and service invocation service
(ServiceInvocationServ). These services are implemented as Web services so that they
can be used in BPEL4WS directly.

 <invoke partnerLink=”ContextCollectionServ”
portType=” getUserContextPT”
operation=” getUserContext”
inputVariable=”varContextNam es”
outputVariable=”varContextValues”>

 </invoke>
 < invoke>

…… // Invoke activity corresponding to
business activ ity

 </invoke>

Fig. 5. Context-Awareness Pattern in BPEL4WS

 Fig. 6. User Interaction Pattern Fig. 7. Dynamic Composition Pattern
 in BPEL4WS in BPEL4WS

486 Z. Zhao et al.

Table 2. Fuctional Operations of BC_Metaobject

Table 3. Fuctional Operations of MetaData_Metaobject

With these services, patterns for keeping business characteristics introduced in
section 3.1 can be defined in the BPEL4WS format. Context-awareness pattern is
defined as shown in Fig. 5, where an additional invoke activity for invoking
ContextCollectionServ is inserted before the invoke activity corresponding to the
business activity of context-awareness. User interaction pattern is defined as shown in
Fig. 6. User interaction component should be used in an asynchronous mode as we
have mentioned before, so the pattern defines the usage of UserInteractionServ by
inserting an invoke activity and a receive activity before the invoke activity
corresponding to the business activity that needs user interaction. Fig. 7 shows the
dynamic composition pattern defined in BPEL4WS, which contains two invoke
activities, invoking ServiceSelectionServ and ServiceInvocationServ respectively.
These patterns are stored as XML files and will be used as target templates by
transformation platform when producing service composites in BPEL4WS.

Metaobjects
Metaobject is viewed as an effective means to implement reflection [8]. In this paper,
three Metaobjects are designed to maintain the contents on the meta-level of our
reflective approach. They form the kernel of the reflective platform.

(1) BC_Metaobject (Business Characteristic Metaobject)
BC_Metaobject is responsible for maintaining the metadata in Business

Characteristic Space. As shown in Table 2, it provides functional operations for
getting and setting metadata about the services and patterns for keeping business
characteristic.

(2) MetaData_Metaobject
MetaData_Metaobject is responsible for maintaining the metadata of VINCA and

BPEL4WS in Correlation Information Space. The functional operations provided by
MetaData_Metaobject are given in Table 3.

(3) Correlation_Metaobject
Correlation_Metaobject is responsible for maintaining the correlation information

between metadata of VINCA and BPEL4WS in Correlation Information Space. It is

A Reflective Approach to Keeping Business Characteristics 487

implemented based on above two Metaobjects. Correlation_Metaobject provides
functional operations for defining and acquiring correlation information, which are
shown in Table 4.

Table 4. Fuctional Operations of Correlation_Metaobject

Operation Function
buildMetaDataCorrelation(String corrName, Vector
vecLeftMetaData, Vector vecRightMetaData, String

strConstraint)

Build correlation between metadata of
VINCA and BPEL4WS

buildAttributeCorrelation(String corrName, String
strLeftAttr, String strRightAttr, String strConstraint)

Build correlation between attributes of
metadata of VINCA and BPEL4WS

getMetaDataCorrelation(String metadataName) Get correlation between metadata
according to metadata name

getAttributeCorrelation (String metadataName, String
attrCorrName)

Get correlation between attributes of
metadata according to its name

The correlation information between VINCA and BPEL4WS maintained by these
three Metaobjects is saved persistently in our implementation. These Metaobjects can
be used to support the implementation of Transformation Engine in the
Transformation Platform and affect the function of Transformation Engine by
changing the correlation information.

4.2 Transformation Platform

The Transformation Platform collects the VINCA specifications of business-end
service composites from users, and transforms them into BPEL4WS specifications of
IT-end service composites. The output from the Transformation Platform can be
exported for direct execution by a BPEL4WS engine. The components - VINCA
Parser, Synthesizer for BPEL and Transformation Engine are the core components of
the Transformation Platform. VINCA parser is in charge of parsing VINCA file and
making preparations for the transformation; VINCA synthesizer for BPEL4WS
produces the BPEL4WS file in the XML format. Transformation Engine is the central
element of the Transformation Platform, which is realized with the help of
MetaData_Metaobject and Correlation_Metaobject. It does not use BC_Metaobject
directly. Instead, Correlation_Metaobject uses BC_Metaobject implicitly. The
algorithm of the transformation engine is given as follows:

Transformation Algorithm
INPUT: bizApp //The parsing result object of business-end service composite in VINCA
OUTPUT: bpelApp //The transformation result object for synthesizer for BPEL4WS
{
 bpelApp = new Vector(); //Produce the space for storing bpelApp

for every element in bizApp
 {

sourceElement = bizApp(i); //Get an element in bizApp
/*Get the metadata of VINCA that the element belongs to*/
Metadata metadata = MetaData_Metaobject.getMetaData(sourceElement.type);
/*Get the correlation information about the obtained metadata*/
correlations = Correlation_Metaobject.getMetaDataCorrelation(metadata);
/*Do transformation according to the obtained correlation information*/
for every correlation in correlations

488 Z. Zhao et al.

 {
Correlation correlation = correlations(j);
/*Produce bpelApp element according to correlation information*/
targetElement = transformation(correlation, sourceElement);
bpelApp.add(targetElement);

}
}
return bpelApp;

}
According to this algorithm, Transformation Engine can be implemented in an

adaptive way through utilizing MetaData_Metaobject and Correlation_Metaobject.

4.3 Application

With the mechanisms and implementation discussed so far, the business-end service
composite of the reference example in VINCA given in section 2 can be transformed
to the IT-end composite in BPEL4WS now. Book Excursion activity in VINCA
process, which refers to Travel Agency business service in the dynamic mode, is
mapped to two invoke activities for invoking ServiceSelectionServ and
ServiceInvocationServ services according to the dynamic composition pattern in
BPEL4WS. The Order Restaurant activity, which is context-aware, is mapped to a
corresponding invoke activity, but an additional invoke activity for invoking
ContextCollectionServ service is inserted according to the context-awareness pattern
in BPEL4WS. In this way, the resulted BPEL4WS specification of the example keeps
the business characteristics defined in the business-end service composite in VINCA.
Due to space limitation, the resulted BPEL4WS specification of the example is
omitted here.

The above example shows that business characteristics of business-end composites
in VINCA can be kept through the presented patterns. The following advantages can
be gained: the shortage of BPEL4WS for supporting business characteristics can be
complemented by special services and the information for keeping business
characteristics can be maintained in an explicit way. Furthermore, when VINCA and
BPEL4WS evolve, e.g. augmenting new business characteristics in VINCA, it is easy
to adapt to changes through reconfiguring the reflective meta-space. We can
reconfigure the correlation information including the information about business
characteristics through the Metaobjects to achieve the adaptability. In this way, it
needs not recode the Transformation Engine any more.

The approach and implementation proposed in this paper are experimenting in a
real world project called FLAME2008 to facilitate business-end service composition.

5 Related Work

Though concepts of business-end service composition are relatively new and
unexplored, there are a number of outstanding research efforts in this area. The
research work in [17], with the goals like ours, also aims at supporting service
composition from business perspectives. It provides a Business Process Outsourcing
Language to capture business requirements. Then, the business-level elements can be

A Reflective Approach to Keeping Business Characteristics 489

mapped into Web services flow to achieve on-demand Web services composition.
The correlation between business requirements described in BPOL and Web services
flow composition is not specified explicitly and is wired in codes directly.

In [4, 12], the authors raised the level of abstraction for developing service
composition implementations in BPEL4WS, following an MDA approach. The
correlation between a specific UML profile for BPEL4WS and constructs in
BPEL4WS is defined and managed. However, because the UML profile is defined for
BPEL4WS specially and do not support more business characteristics.

In [9, 10], a model-driven approach is proposed to transform platform-independent
business models into platform-specific IT architectural models. The core mechanism
for transformation is that special business patterns of business-level model are
abstracted and assigned with corresponding IT implementation. However, the
contents for keeping business characteristics and mapping are not maintained
explicitly and need to be hard-coded when realizing the approach. An important
contribution of this approach is the consistency checking of transformation, which
will be considered in our ongoing work.

The work on model transformation shares some methodological similarity with our
work. In [13], a framework for model transformation is given. A transformation
scheme is defined in UML through extending the CWM Transformation metamodel.
Through the transformation scheme, transformation can be represented explicitly. In
[1], authors emphasized the importance of a high-level model transformation
language. With this language, the behavior of model transformers can be formally
specified. As such, the representation and the implementation of the behavior of
transformers can be separated, and the development or maintenance of these
transformers gets easier.

6 Conclusion

In this paper, we present a reflective approach to mapping business-end service
composites in VINCA to IT-end service composites in BPEL4WS. The focuses are
on: how to keep the business characteristics during the mapping; how to adapt to
changes of the correlation information for the mapping. The approach provides the
following valuable contributions:

 It allows representing the correlation information between VINCA and BPEL4WS
on the meta-level explicitly. As such the correlation information can be
maintained in an adaptive way and it is easy to adapt to new versions of VINCA
and BPEL4WS.

 It can achieve the goal of keeping business characteristics through special
components and patterns. By combining the contents about the components and
the patterns with the correlation information on the meta-level, the business
characteristics can be maintained in an adaptive way.

 It results in a lightweight and extendable Transformation Engine. It is lightweight
because it “interprets” the Metaobjects to transform VINCA into BPEL4WS; it is
extendable in the sense that it is easy to extend the transformation function by
modifying the correlation information through the Metaobjects.

490 Z. Zhao et al.

In our current work, the IT-end composites in BPEL4WS mapped from business-
end composites in VINCA are still proprietary. How to support more sophisticated
function of BPEL4WS, such as compensation, except handling, etc, is one of the
important goals of our undergoing research work. How to express these contents in
the correlation information and how to maintain them through Metaobjects are still
open questions. Furthermore, we will also address the deployment and load-balancing
of the services for keeping business characteristics to ensure effective usages.

References

1. A. Agrawal, Metamodel Based Model Transformation Language to Facilitate Domain
Specific Model Driven Architecture, In OOPSLA'03, Anaheim, California, USA, 2003.

2. T. Andrews, F. Curbera et al, Business Process Execution Language for Web Services,
http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/, 2003.

3. A. Arkin, Business Process Modeling Language - BPML1.0, http://www.bpmi.org, 2002.
4. J. Amsden, T. Gardner et al, Draft UML 1.4 Profile for Automated Business Processes

with a mapping to BPEL 1.0, IBM, 2003.
5. B. Benatallah, Q. Z. Sheng, and M. Dumas, The Self-Serv Environment for Web Services

Composition, IEEE Internet Computing, 7(1): 40-48.
6. D. Edmond and A.H.M. Hofstede, Achieving Workflow Adaptability by means of

Reflection, In The ACM Conf. Computer Supported Cooperative Work (Workshop on
Adaptive Workflow Systems), Seattle, USA, 1998.

7. Y. Han, H. Geng et al, VINCA - A Visual and Personalized Business-level Composition
Language for Chaining Web-based Services, In First International Conference on
Service-Oriented Computing, Trento, Italy, 2003, LNCS 2910, 165 - 177.

8. G. Kickzales, J. Rivieres, and D. G. Bobrow, The Art of the Metaobject Protocol, MIT
Press, Cambridge, Massachusetts, 1991.

9. J. Koehler, G. Tirenni, and S. Kumaran, From Business Process Model to Consistent
Implementation, In Proceedings of EDOC'02, Switzerland, 2002, IEEE, 96-108.

10. J. Koehler, R. Hauser et al, A Model-Driven Transformation Method, In Proceedings of
EDOC'03, Brisbane, Australia, 2003, IEEE, 186-197.

11. P. Maes. Concepts and Experiments in Computation Reflection, ACM SIGPLAN
Notices, 1987, 147-155.

12. K. Mantell. Model Driven Architecture in a Web services world: From UML to BPEL,
http://www-106.ibm.com/developerworks/webservices/library/ws-uml2bpel/, 2003.

13. J. Oldevik, A. Solberg et al, Framework for model transformation and code generation, In
Proceedings of EDOC'02, Lausanne, Switzerland, 2002, IEEE, 181-189.

14. B. Orriens, J. Yang, and M. P. Papazoglou, Model Driven Service Composition, In First
International Conference on Service-Oriented Computing, Trento, Italy, 2003, LNCS
2910, 75 - 90.

15. S. R. Ponnekanti and A. Fox, SWORD: A Developer Toolkit for Building Composite
Web Services, In The Eleventh International World Wide Web Conference, Honolulu,
Hawaii, USA, 2002.

16. B. Raman, Z. M. Mao et al, The SAHARA Model for Service Composition across
Multiple Providers, In Proceedings of the First International Conference on Pervasive
Computing, Zurich, Switzerland, 2002, LNCS 2414, 1-14.

17. L. J. Zhang, B. Li et al, On Demand Web Services-Based Business Process Composition,
In International Conference on Systems, Man & Cybernetics, Washington, USA, 2003.

	Introduction
	Problem Statement with a Reference Example
	Conceptual Model of the Reflective Approach
	Business Characteristic Space
	Components for Keeping Business Characteristics
	Patterns for Keeping Business Characteristics

	Correlation Information Space

	Implementation and Application
	Reflective Platform
	Auxiliary Service Set
	Metaobjects

	Transformation Platform
	Application

	Related Work
	Conclusion
	References

